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We propose a relation which predicts the low-frequency thermal conductivity of a one-dimensional �1D�
system from the thermal conductivity and bulk viscosity at higher frequency. Our theory is based on the
assumption that “ballistic” transport by sound waves dominates the heat transport. For a system with equal heat
capacities �cp=cv� this relation is particularly simple. We test the prediction by simulating a chain of particles
with quartic interparticle potentials under zero pressure conditions. As the frequency �→0 the theory predicts
that the energy current power spectrum diverges as �−1/2, not seen in previous simulations. Because we
simulate very long chains to long times we do observe the crossover into this regime. The bulk viscosity of a
1D chain has been determined via simulation. It is found to be finite for our system, in contrast to the thermal
conductivity which is infinite.
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I. INTRODUCTION

The criteria for a system to obey Fourier’s law of heat
conduction remain shrouded in mystery. While in three di-
mensions all systems seem to obey Fourier’s law, in one
dimension �1D� there is no known way to predict whether a
system will obey it. Most 1D systems do not obey Fourier’s
law but there are some exceptions �see, for example, Refs.
�1–5��. A thorough summary of past work in this area can be
found in a recent review article �6�.

It has been suggested by many authors �5,7,8� that, in 1D
systems not obeying Fourier’s law, heat is transmitted
through the system by long-wavelength sound modes which
pass through the system essentially undamped. This idea is
backed up by the space and time-dependent heat current cor-
relation function shown in Ref. �8�, which shows energy
propagation through the FPU-� system at a constant velocity.
In that paper it is argued that the very well known slow
diffusion of energy out of the long-wavelength modes for
FPU systems may allow those modes to act as “undamped
transport channels.” It was also consideration of this picture
of “ballistic transport” dominating heat flow which led to the
design of the first 1D system which was shown to have a
finite thermal conductivity �1�—the “ding-a-ling” model. It
would be satisfying to put this idea of ballistic heat transport
on a firmer theoretical footing and to see whether this ap-
pealing physical picture can lead directly to any predictions
or explanations of how heat flow in 1D systems should be-
have. Few attempts have been made in this direction. For an
exception to this see Ref. �8� in which this physical picture
has been employed to attempt to explain the observed behav-
ior of 1D systems �but also see comments in Ref. �9� and in
our Appendix�.

Though they were originally investigated as a toy model
for a crystal, 1D oscillator chains are in many respects more

similar to fluids. In particular, they demonstrate diffusion and
a lack of long-range order �10�. In most past studies the heat
transport is considered in isolation from other transport. The
fluidlike nature of 1D systems suggests that it makes sense to
study them via hydrodynamics, coupling the heat, momen-
tum and mass transport modes. A calculation by Narayan and
Ramaswamy using hydrodynamics has recently been pub-
lished �9� in which a universal scaling law for heat transport
is predicted. However, these authors recognize that this ap-
pears to be inconsistent with some simulations and must
speculate on the cause�s�. We believe progress in understand-
ing is best made by simulation studies that go beyond simple
power law comparisons and pay careful attention to ampli-
tudes as well. This in turn requires that we also consider the
bulk viscosity, which has been ignored in all previous simu-
lation work on 1D systems. The bulk viscosity is the zero-
frequency limit of the momentum current power spectrum.
Where it is considered at all, the momentum current power
spectrum is generally assumed to diverge as �−1/2. This is the
assumption, for example, in Ref. �9�. This is probably based
on old predictions from mode-coupling theory such as Refs.
�11,12�. The assumption of a divergence of the momentum
current power spectrum is likely reasonable but we are un-
aware of previous work to verify this behavior. While we
believe that this may be the most common case we show in
this paper that it is not universal. Indeed, in contrast to the
thermal conductivity, we will find strong evidence that the
bulk viscosity of our chosen system is finite. One would
expect, through mode coupling, that this different behavior
of the bulk viscosity would lead to different behavior in the
thermal conductivity.

Fourier’s law of heat conduction is Jq=−��T�r , t� where
Jq is the macroscopic heat flux density, T�r , t� is the local
temperature, and � is the thermal conductivity. Newton’s law
of bulk viscous dissipation is Jp=−�� ·v�r , t�, where Jp is
the macroscopic momentum current density, � is the bulk
viscosity, and v�r , t� is the local macroscopic velocity field.
We ignore shear viscosity since it is irrelevant for 1D sys-
tems. The sense in which most 1D systems do not obey
Fourier’s law is that � fails to converge to a finite macro-
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scopic value. Rather, � is seen to go as N�, where N is the
number of particles in the chain and � is some power. The
value of � is a matter of great interest, with different values
being reported for different systems. Values typical of oscil-
lator systems are 0.37 �reported for the FPU-� system� to
0.44 �reported for FPU-� and diatomic Toda systems� �6�.
Recently �=1/3 has been predicted �9�. Results are available
in a variety of other systems such as �=2/5 for a “quasi-1D”
harmonic system with transverse modes �13�, and for sys-
tems of hard point particles �6,14� where �=1/3 has been
reported.

� and � are formally related to the generalized or wave-
vector and frequency-dependent transport coefficients
��k ,�� and ��k ,�� by �15�

� = lim
�→0

�̂��� = lim
�→0

lim
k→0

��k,�� , �1a�

� = lim
�→0

�̂��� = lim
�→0

lim
k→0

��k,�� . �1b�

Here and in the following we use the notation

lim
k→0

A�k� � Â . �2�

The frequency-dependent �̂��� and �̂��� can be written as
Green-Kubo relations in terms of the corresponding equilib-

rium heat current correlation function �HCCF� Ĉ��t� and mo-

mentum current correlation function �MCCF� Ĉ��t�, namely,

�̂��� = lim
t→�

�2kB

2
�

−t

t

dt�ei�t�Ĉ��t�� , �3a�

�̂��� = lim
t→�

�

2
�

−t

t

dt�ei�t�Ĉ��t�� , �3b�

where kB is Boltzmann’s constant and �=1/kBT is the in-
verse equilibrium temperature. In terms of the corresponding
currents ĵ��t�, where �=� or �, we have

Ĉ��t� � lim
L→�

1

L
�	 ĵ��t�	 ĵ��0�� , �4�

where L is the system length, �¯� denotes a canonical aver-
age, and 	 ĵ��t� is the k→0 limit of the deviation of j��k , t�
from its equilibrium value. A further remark on the definition
of ĵ��t� is warranted. It is, following Eq. �2�, the zero k limit
of the current density j��k , t�. In the case of the heat current
density this is equivalent to what is often referred to as the
“total heat flux,” J��t��	i=1

N j��xi , t� �xi is the position of the
ith particle� in studies where Green-Kubo relations are used
to calculate thermal conductivities �6�.

The HCCF Ĉ� in the Green-Kubo relation above can
freely be exchanged with the energy current correlation func-

tion ECCF, Ĉ
 �15� defined analogously to Ĉ� but with the
heat flux density ĵ� replaced with the energy flux density ĵ


according to Eq. �5� below. Numerically, it is more conve-
nient to calculate the ECCF and this is what we do in the

simulations reported in this paper. In practice, we work with
the Fourier transformed versions or power spectra of the cor-

relation functions Ĉ
˜

����. We will refer to these as the mo-
mentum current power spectrum �MCPS� and the energy cur-
rent power spectrum �ECPS�.

II. COUPLING OF MODES WITH BALLISTIC HEAT
TRANSPORT

Consider our assumption that the transport of energy in
the system is dominated in the thermodynamic limit by trans-
port via sound waves. We write our 1D energy density and
energy current density as equilibrium values 
̄ and j
 plus
local fluctuations 	
�x , t� and 	j
�x , t�. Thus, our energy cur-
rent correlation function is

Ĉ
�t� = lim
L→�

1

L
�	 ĵ
�t�	 ĵ
�0�� . �5�

In the usual hydrodynamic picture, every mode is coupled to
every other mode. Under our assumption that sound modes
should dominate energy transport, the zero k limit of the
energy current fluctuation 	 ĵ
 should have terms correspond-
ing to contributions by sound modes of all wave vectors

	 ĵ
�t� = 	
k�

	 ĵ
�k�,t� . �6�

For clarity, it should be stressed that 	 ĵ
�k� , t� is not the wave
vector k� mode of 	j
 �which would be denoted 	j
�k� , t��,
but rather the contribution to its k=0 mode due to sound
modes of wave vector k� �note the hat which indicates a k
=0 quanitity�. Continuing with the usual hydrodynamic pic-
ture, the overall amplitude of the contribution to the energy
current by the sound mode is c	
�k� , t�, where c is the ther-
modynamic speed of sound and 	
�k� , t� is the k� component
of the energy density. The amplitude of particle density fluc-
tuations due to a sound mode damps exponentially with a
damping constant of 1

2�k�2 where � is the sound damping
coefficient, which is a property of the system. But the mode
amplitude of the energy density goes as the square of the
mode amplitude of the particle density, so the energy density
fluctuation must be

	
�k�,t� = 	
�k�,0�e−�k�2
t
. �7�

Our use of a single sound damping coefficient, �, in the
foregoing argument is naive. At the microscopic level we
ought to expect that each sound mode has its own damping
coefficient �k�. Hence, the contribution to 	 ĵ
 due to a single
sound mode of wave vector k� is

	 ĵ
�k�,t� = c	
�k�,0�e−�k�k�
2
t
. �8�

The contribution due to this mode to the k=0 limit of the
ECCF �5� is thus c2��	
�k� ,0��2�e−�k�k�

2
t
 /L. The amplitude
in the harmonic limit is ��	
�k� ,0��2�=1/�2. Fourier trans-
forming and summing over modes yields the ECPS
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Ĉ
˜


��� =
2c2

L�2	
k�

�k�k�2

�2 + ��k�k�2�2 , �9�

where the sum is over the whole reciprocal lattice, restricted
to the number N of particles in the system; this is in the spirit
of the Debye model. Together with the approximation of
constant speed of sound, this means that Eq. �9� will not be
valid if � is so large that the large k� modes contribute sig-
nificantly. Note that our assumption of a constant c will also
only be valid for the lowest frequencies and that, more gen-
erally, the speed of sound should be brought inside the sum
and replaced with a wave-vector-dependent speed of sound
ck� calculated from a dispersion relation appropriate to the
system. We will examine how significant an effect this is
below.

The sound damping coefficient in 1D is formally given by
�= ��−1�� / �
cp�+� /
, where �=cp /cv is the ratio of the
specific heat capacities, cp and cv are the specific heat capaci-
ties per unit mass at fixed pressure and volume, respectively,

 is the mass density, and � and � are given by Eq. �1�. But
the limiting values of � and � in Eq. �1� may not exist in 1D
so it is not obvious how to interpret this expression for �. We
make the simplest assumption possible—namely, that since a
mode at wave vector k� oscillates at frequency ��=ck� in the
hydrodynamic limit we need only make the replacements �

→�k�, �→ �̂���� and �→ �̂����. In summary, the fundamen-
tal assumption of this paper is that Eq. �9� is correct with
�k�=���/c������ and

����� = �� − 1��̂����/�
cp� + �̂����/
 �10�

with �̂���� and �̂���� given by Eq. �3�. In particular, we
assume that the wave-vector k� plays no role other than to
define the frequency of the mode and hence its damping. The
absence of explicit k� dependence is not a priori obvious nor
motivated by any theory, but our simulations suggest that it
is true.

Note that Eq. �9� implies that the ECPS at � is dominated
by modes k� for which �k�k�2��. Typically the frequency of
a dominant contributing mode is much greater than �. This
means that our picture of 1D systems is that of a mode “cas-
cade” rather than mode “coupling.” Each mode affects
modes of much lower �, but high � modes are largely un-
affected by low � ones. This lack of back action makes
analytical calculation very tractable. Specifically, Eq. �9� has
a problem in that the ECPS depends on itself through its

dependence on �k�. However, this is eased since Ĉ
˜


��� is
totally dominated by contributions from frequencies much
higher than �. On the other hand, the frequencies in this
cascade rapidly become very small which will make confir-
mation by simulation challenging. For an illustration of this
see the Appendix.

III. CASES OF INTEREST

The foregoing arguments make it clear that we ought to
be interested in the low-frequency behavior of the MCPS
�and, thus, the bulk viscosity�. There has been relatively little

attention paid to this in the literature. One of the few predic-
tions of the bulk viscosity in 1D is contained in Refs.
�11,12�, where the leading order terms of all of the transport
coefficients are calculated through mode coupling. In Ref.
�11� the leading large t term of the MCCF, specialized to 1D,
is given as

Ĉ��t� � � M+−

���1/2 +
MHH

�2DT�1/2
� 1

4�t
�1/2

, �11�

where DT=� /
cp is the thermal diffusivity and

M+− =
1

�2�1 −
� − 1

�pT
+




c
� �c

�

�

s

2

, �12a�

MHH =
1

2�2 �� − 1�2�1 −
1

�pcp
� �cp

�T
�

p
+

1

�p
2� ��p

�T
�

p

 ,

�12b�

where �p=−
−1��
 /�T�p is the thermal expansion coeffi-
cient, s is the entropy per particle and p is the pressure.

Equation �11� suggests that the low-frequency behavior of
the MCPS should go as �−1/2 in 1D. However, let us now
restrict our attention to a 1D oscillator chain with only even
powers in the interparticle potential at zero pressure. Such a
system has �=1 which implies �p=0 through simple ther-
modynamics. One term in Eq. �12b� is zero trivially due to
�=1. Terms with �p in the denominator drop out when we
realize that �p���−1�1/2 and ���p /�T�p���−1�1/2. Finally,
a simple but tedious calculation shows that, in a 1D oscillator
chain with only even powers in the interparticle potential at
zero pressure, we have ��c /�
�s=−c /
, and so the remaining
term in Eq. �12a� cancels with the 1 inside the square brack-
ets. Thus the t−1/2 term of the MCCF should vanish in a 1D
oscillator system with �=1. The next order terms in 1D are
probably of the form t−1/2 exp�−At� for some constant A �see
Eq. �22� in Ref. �11��. We conclude that the integral of the
MCCF should converge for a 1D oscillator system with �
=1, yielding a finite bulk viscosity. Thus, we should consider
the effect that a finite bulk viscosity and �=1 has on Eq. �9�.
In this case, replacing the sum in Eq. �9� with an integral, we
obtain

Ĉ
˜


��� =
c2

�2� 1

2��
, � = const. = �̂/
 � �/
 . �13�

Thus, for this special case we expect Ĉ
˜


 to vary as �−1/2 at
low frequency. This is precisely the conclusion of Ref. �11�
who give, analogous to Eqs. �11� and �12�

Ĉ
�t� �
c2

�2��
� 1

4�t
�1/2

, �14�

where we have again specialized the expression in Ref. �11�
for 1D. Fourier transformation of Eq. �14� gives Eq. �13�.
However, note that Eq. �14� is obtained in Ref. �11� as a
general result for 1D chains whereas we obtain Eq. �13� only
for the special case of �=1.

Now let us turn to the more general case of ��1. For the
purposes of illustration let us interpret Eq. �11� naively and
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assume that in this case �̂��−1/2 for low frequencies �but see

comments in the Appendix where we put �̂ and �̂ on equal
footing�. If we make the further, reasonable, assumption that
�̂�����−� with ��0.5, consistent with other theoretical
predictions and numerical evidence, then Eq. �9� will be

dominated by the �̂��−1/2 behavior and we will have
�������0��−1/2. Once again replacing the sum in Eq. �9�
with an integral, we obtain

Ĉ
˜


��� =
4c3

3�2��0c�2/3�−1/3, � = �0�−1/2. �15�

It is worth comparing Eq. �15� to the result obtained in Ref.

�9�. In that paper the authors also use �̂��−1/2, and they also
obtain �̂��−1/3. We will not consider this case further here
but defer it to a future paper.

In light of the above we choose, for now, to study a sys-
tem with pure quartic interparticle potentials at zero pressure.
This makes �=1 and hence

�k� =
�̂����



=

�

2

Ĉ
˜

���� = ck�� . �16�

Thus, in this preliminary test of our assumptions we will not
have to worry about multiple causes, i.e., both viscous and
thermal damping. The Hamiltonian is

H = 	
i=1

N � pi
2

2m
+

B

4
�xi − xi−1 − a�4
 , �17�

where N is the number of particles in the system, pi and xi
are the momentum and position of the ith particle, a is the
equilibrium particle spacing, m is the particle mass, B is a
force constant, and where we use x0�xN−L to produce pe-
riodic boundary conditions. As is usual in studies of oscilla-
tor systems, we do not impose any further restrictions on
particle positions. Of course the particle order is fixed by the
fact that the force on a particle i depends only on the dis-
tances to particles i−1 and i+1 and the labeling of particles
is not allowed to change.

We calculate the equilibrium thermodynamic properties of
the system both to check our simulation and in order to be
able to give a value for c in Eq. �9�. The particle spacing a is
arbitrary and, with a pure power law potential, constants
such as B contribute only as scale factors. Therefore, without
loss of generality, we can set B=1, m=1 and a=1. We carry
out all simulations with �=1, P=0. In these units and at
these conditions the thermodynamic speed of sound is c
=� 1

2��1/4� /��3/4��1/2�1.216 and the mean energy is �E�
=3N /4. We go over from spatial coordinates to a particle
counting scheme �Euler to Lagrange�. Hence, from this point
on our spatial Fourier transform is defined as

j��k,t� =
1

�N
	
s=1

N

j�
s−1/2�t�eiks, �18�

where k= �−�N−1�� /N , . . . ,−2� /N ,0 ,2� /N , . . . ,�� and
j�
s−1/2 is the current between particles s and s−1. The momen-

tum and energy currents are

j�
s−1/2 = �s−1/2 � − �xs − xs−1 − 1�3, �19a�

j

s−1/2 = �ẋs + ẋs−1��s−1/2/2, �19b�

where �s−1/2 is just the local stress. The k=0 current fluctua-
tions ��	 ĵ��t��2� are useful for checking thermodynamic sum
rules. We find

��	 ĵ��t��2� =
6��3/4�
��1/4�

−
1

2

��1/4�
��3/4�

� 0.549, �20a�

��	 ĵ
�t��2� =
3��3/4�
��1/4�

� 1.014. �20b�

IV. NUMERICAL RESULTS

We have used molecular dynamics simulations of our sys-
tem. We integrate with an eighth order symplectic algorithm
because symplectic integrators produce no secular terms in
the system energy �16,17�. We constructed our algorithm
from precision improved versions of the coefficients pre-
sented as “solution D” in Table 2 of Ref. �16�. For each run,
the system to be integrated is initialized to an equilibrium
state by using ensemble statistics. We then change coordi-
nates to a frame with zero total momentum. This step is

important to prevent advective contributions in our Ĉ
˜

� �9�.
Many runs were averaged to produce approximate canonical
ensemble averages of calculated quantities. We tracked the
errors in energy, momentum and center of mass position as a
check. Integration was carried out on the Shared Hierarchical
Academic Research Computing Network �SHARCNET�,
which is a network of HP/Compaq processors in parallel.
Typical runs on 8 processors with 214 particles for 222 time
units and a time step of 0.125 time units ran for 2�105s
��2 days�.

The sums over all particles of the momentum current ĵ��t�
and energy current ĵ
�t� were output so that we could calcu-
late the k=0 modes of the ECCF and MCCF. Additionally,
�E�, �	 ĵ�

2� and �	 ĵ

2�. The averages of these thermodynamic

sums were averaged over all runs of the simulations and are
within a standard error of the expected values �Table I�.

Calculating Ĉ
˜

���� directly is impractical. We instead cal-

culate �
 ĵ˜����
2� and note that

TABLE I. Comparison of the analytically predicted thermody-
namic sums with values from simulations. Errors on numerical re-
sults are simply the standard error of the results from the
simulations.

Quantity Analytical prediction Numerical result

�E� /N 3/4 0.749±0.007

�	 ĵ�
2� 0.549 0.547±0.008

�	 ĵ

2� 1.014 1.008±0.06
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�
	 j̃̂����
2� = t�
−t

t

dt��1 −

t�

t
�ei�t�Ĉ��t�� � tĈ

˜
���� ,

�21�

where t is a large time �ideally t→��. At the lowest fre-
quency examined, 2� / t, this approximation causes an error
of only 3%. The error drops off quickly over the region of
interest �by 2000� / t the error is 0.007%�. Having thus com-

puted Ĉ
˜


��� and Ĉ
˜

���� for each run, we averaged over all
runs. The results for 49 runs at N=214, t=222 are shown in
Fig. 1 and, on expanded scales, Figs. 2 and 3. Data at higher
� has been “binned” for clarity. Binning reduces the noise

level without washing out significant structure. The ECPS is
similar to the one reported for the FPU-� system in Ref. �8�.
The series of peaks in the MCPS are at the lowest sound
mode frequencies �i /2�=cki /2�= �c /Na�i for i= �1,2 , . . . �.

We have used Eq. �9� to calculate the theoretical Ĉ
˜


 using

Eq. �16� to get �k� from the simulated Ĉ
˜

� �we use a fit to Ĉ
˜

�

to generate the lowest � parts of the theoretical ECPS partly
to reduce “noise” and partly for numerical convenience�. A
comparison of our theoretical prediction for the ECPS with

the simulation results can be seen in Fig. 1. The predicted Ĉ
˜




follows the simulated one very closely at all but the highest
frequencies. It should be stressed that the theoretical curves
in Fig. 1 have no adjustable parameters. The inputs to the
theoretical curve are only the simulated MCPS and the hy-
drodynamic speed of sound, c and these determine all prop-
erties of the curve including its overall amplitude. The dis-
crepancy at high � can be explained by the breakdown of the
hydrodynamic approximation. The magnitude of this break-
down is estimated by comparison with the predicted curve in
which the dispersion relation ��=2c sin�k� /2� is used to give
a reasonable nonconstant c. The simulation data at most fre-
quencies �but see Fig. 4� lies between the curves generated
with the two dispersion relations. The frequency integrals of
the two theoretical curves differs by a factor of 2. This is
mostly because of the high-frequency behavior which domi-
nates the integral. The two theoretical curves become virtu-
ally indistinguisable at very low frequencies, as we would
expect.

The low � peaks in the MCPS raise a question about its
�→0 behavior; is it approaching a constant value or are
there progressively higher peaks as �→0? We can address
this question by looking at Fig. 2 which shows the low �
parts of the MCPS for two system sizes. The figure clearly
shows that the peaks are simply pushed to lower frequencies,
leaving a zero slope region at frequencies above the peaks.

FIG. 1. �Color online� The ECPS and MCPS for a quartic oscil-
lator chain. The predicted ECPS was calculated using Eq. �9�. Error
bars on selected points represent one standard deviation errors.

FIG. 2. Low-frequency part of Ĉ
˜

���� for two system sizes. The
top curve has been shifted up by 2 units. The “corner” frequency ��

is obtained from the fit to the MCPS �see text�.

FIG. 3. �Color online� Low-frequency part of Ĉ
˜


��� with trend
line showing �−0.38 behavior at intermediate frequencies and devia-
tion from that behavior at lower frequencies. The linear regression
line is calculated on the range from � /2�=2−16 to � /2�=2−10 and
extrapolated to lower frequencies.
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Presumably, in the limit of an infinite system the peaks
would be pushed to zero frequency leaving the entire power
spectrum for frequencies above � /2��2−10 with zero slope.
This, combined with the prediction from Eq. �11� is strong
evidence that the MCPS is converging to a finite value �im-
plying a finite bulk viscosity ��. The MCPS is fit between
�=6�10−4 and 1�10−1 by the empirical relation

Ĉ
˜

� =
A

�1 + ��/���2�1/4 , �22�

where A=1.56, ��=1.83�10−2, where �2=480 on a fit over
425 points. This indicates a bulk viscosity for the system of
�=A /2=0.78.

The power law behavior of the ECPS changes at very low
frequency due to the onset of a regime in which the sum in
Eq. �9� is dominated by the flat portion of the MCPS. Figure
3 shows a linear regression to the ECPS between � /2�
=2−16 and � /2�=2−10 �the clearly linear region�. For these
intermediate frequencies, the ECPS goes as approximately
�−0.38. However, the extrapolation to lower frequencies
shows that there is a clear divergence from �−0.38 at very low
frequencies where the ECPS seems to go as a higher power
of � �see further remarks in the next paragraph where we

discuss the apparent approach to Ĉ
˜


��−1/2�. No single
power law is able to fit the whole region below ��1.5
�10−3. Indeed, the lowest frequency points deviate from the
linear regression by over 4 standard deviations. Even if they
are included in the linear regression all of the lowest fre-

quency points deviate from the fit line by over three standard
deviations.

The nature of the changing behavior is made much more

obvious in Fig. 4 in which we see that �1/2Ĉ
˜


 appears to be
going asymptotically to the prediction in Eq. �13�. The fre-

quency �
 of the “corner” in Ĉ
˜


 can be determined from the

amplitude and “corner” frequency �� of Ĉ
˜

�. The high-
frequency limit of Eq. �22� is ��������A��� /��1/2 /2. So
we may use Eq. �15� with �0=A��

−1/2 /2 to obtain

Ĉ
˜


�� � �
� =
1

3
� 28c7

A2��

1/3

�−1/3. �23�

The intercept of Eq. �23� with Eq. �13� yields a “corner”
frequency for the ECPS of

�
 =
36

216

A��
2

c2 � 3.93 � 10−6. �24�

It is worth noting again that our theory yields Ĉ
˜


��−1/3 for

the ���
 region when we assume that Ĉ
˜

���−1/2 for �
���. This is similar to the �→0 behavior predicted in Ref.
�9�. However, this is not the �→0 behavior of this system
�though we expect it to be the �→0 behavior of many other
systems�. Finally, Fig. 4 shows that the theoretical prediction
differs from the simulation data by a few percent around
� /2�=2−14. Because predictions based on different disper-
sion curves differ by the same order, this probably marks the
limit of validity of the hydrodynamic approximation on
which our modeling is based.

V. CONCLUSIONS

At frequencies typical of previous studies ����
� we

obtain Ĉ
˜

���−0.38. This is in close agreement with Ĉ
˜

�

��−0.37 reported for the FPU-� model �8�. However, at the
lower frequencies studied here ����
� we see strong evi-
dence that the power law dependence is approaching �−1/2 as
predicted.

Our analysis suggests the following cases.
�1� In the case of a 1D oscillator system with cp=cv we

expect that the bulk viscosity is finite �consistent with the
mode coupling predictions in Ref. �11�� and the low-

frequency limiting behavior of the ECPS should be Ĉ
˜




��−1/2. This is what we see for our pure quartic system. We
expect that runs to sufficiently low frequency on the FPU-�
system at zero pressure should display this behavior as well.

�2� For the more general case of 1D oscillator systems
with cp�cv we might naively expect, also from Ref. �11�,
that �̂��−1/2 �which is the usual assumption� and our theory

predicts Ĉ
˜


��−1/3 in agreement with Ref. �9�. We are cur-
rently studying a system with cubic and quartic terms in the
interparticle potential �for which cp�cv�. Preliminary results

are consistent with an infinite bulk viscosity and Ĉ
˜


���
��−1/3. These results will be reported in detail in a future

FIG. 4. �Color online� The ECPS multiplied by �1/2. The hori-
zontal grey line is the �=constant prediction �13�. The “corner”
frequency �
 is explained in the text. The “constant c” theoretical
curve was calculated using ��=ck� whereas the “nonconstant c”
curve was calculated using ��=2c sin�k� /2�. Note that Figs. 1 and
3 show that the ECPS is essentially featureless �i.e., it has no peaks�
in the frequency range from � /2�=2−19 to 2−10. Because of this,
we have carried out additional binning of the simulation data in that
region for this plot in order to make the overall trend of the data
more obvious.
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paper. We believe that studies of the FPU-� system will also
see this behavior if pushed to low enough �. However, there
is another interpretation of these results �see the Appendix
and point 3 below�.

�3� The case described in point 2 above in which �̂
��−1/2 may never occur. Instead the situation for cp�cv
may be considerably more complicated as described in the
Appendix.

�4� In the case of a 1D system with a zero hydrodynamic
speed of sound such as the coupled rotor system our theory
predicts that the thermal conductivity should be finite �as
seen in Ref. �3��. Equation �9� predicts no contribution to the
ECPS due to ballistic transport if c=0.

�5� It is unclear whether some modified version of this
theory could apply to “quasi-1D” systems with transverse
modes such as that in Ref. �13�.

Our key assumption has been that the heat transport in the
system is dominated by “ballistic” transport via sound
waves. Further, we have assumed that the � in the mode

coupling formula for Ĉ
˜

� should be the ����� at the �� of the
contributing mode. Hence, we are able to generate a pre-
dicted curve for the ECPS which is in very good agreement
with the simulated ECPS. We have used a system in which
cp=cv to simplify matters because there is no � term in the
sound damping coefficient.

This work suggests that the old idea of ballistic transport
of heat in 1D oscillator systems is a quantitatively correct
physical picture. It shows that it is possible, using this pic-
ture, to predict the low-frequency power law behavior of the
ECPS and that this behavior depends critically on the low
frequency power law behavior of the MCPS. Further, it
shows that, because of the “mode cascade,” the onset of the
low-frequency limiting behavior of �̂, occurs at frequencies

far lower than the onset of the limiting behavior of �̂. We
suggest that much of the confusion around different values of
� for different oscillator systems stems from the fact that the
simulations, thus far, have not probed low enough frequen-
cies to see the limiting behavior. We hope that this work will
also spark interest in the bulk viscosity of 1D systems, which
has been neglected in previous work.

APPENDIX: A TOY MODEL OF COMPLETE COUPLING
OF MOMENTUM AND ENERGY TRANSPORT

Let us consider the case of a 1D chain with ��1 in more

detail. In this case we expect both Ĉ
˜

� and Ĉ
˜


 to diverge as

�→0. This implies a divergence in both �̂��� and �̂��� and,
by extension, divergences in ����� and DT����. Thus, the
denominators in the terms inside the brackets in Eq. �11� are
not constants but depend on frequency and are divergent.

Thus, we have reason to doubt the simple picture of �̂
��−1/2, since it is not self-consistent.

The divergences in �̂��� and �̂��� will feed back into Eq.
�9� via Eq. �10� as already examined. However, they will also

feed back into an equation for Ĉ
˜

���� analogous to Eq. �9�. To
illustrate the essential features of this picture we investigate
the toy equation

G�x� =
2�

�
�

0

�

dy
G�y�y2

x2 + �G�y�y2�2 , �A1�

which combines the self-consistency equation for Ĉ
˜

� and Ĉ
˜




into a single equation. In Eq. �A1� x is a dimensionless fre-
quency ratio � /�0 with �0 some characteristic frequency
and G�x�=��x��0 /c2 is a dimensionless damping coefficient.
The sum over modes k� in Eq. �9� has been converted to the
integral over dimensionless frequency y in Eq. �A1�. Com-
plicated but qualitatively unimportant thermodynamic func-

tions that enter into the equations for Ĉ
˜

� and Ĉ
˜


 are repre-
sented by the single dimensionless parameter �.

The essence of Eq. �A1� is that for any small x the integral
is dominated by y�x. This is completely analogous to the
behavior of Eq. �9�. As already described in the text after Eq.
�10�, this is better described as a mode cascade rather than as
mode coupling. In practice this means that Eq. �A1� can be
solved iteratively and, as an excellent approximation, this
iteration need only be carried out once. The results of this
iteration are as follows. Set

Gp�y� = Apy−p �A2�

in the integrand in Eq. �A1� and assume that this is valid for
all y. Then it follows that G�x� on the left-hand side is

Gq�x� = Aqx−q, �A3�

where

q =
1 − p

2 − p
, �A4a�

Aq =
�Ap

1/�p−2�

�2 − p�cos� �

4 − 2p
� . �A4b�

Of course it is to be understood that Eqs. �A2�–�A4� are only
valid over restricted intervals for y and x. The boundary be-
tween two regions of the solution given by Eqs. �A2� and
�A3� is found by setting x=y=xpq and equating Gq�xpq� to
Gp�xpq�. Gp�y� is approximately valid for y�xpq and Gq�x�
for x�xpq. The integration is to be repeated with Gq replac-
ing Gp in the integrand. The final solution G is a concatena-
tion of the Gp and is piecewise smooth.

Since our model only describes hydrodynamic processes,
the high-frequency initialization must be obtained by other
means such as numerical simulation. For our toy for illustra-
tion purposes we simply choose our starting Gp as G0=1
�i.e., p=0�. The subsequent exponents follow a Fibonacci
sequence; they are 0/1 ,1 /2 ,1 /3 ,2 /5 , . . ., converging on p*

= �3−�5� /2�0.382. The corresponding fixed point A* is
found by setting Ap=Aq=A* with p= p* in Eq. �A4�. We de-
note G*�x�=A*x−p*

. The result for G�x� /G*�x� for the choice
of �=1 is shown on a logarithmic scale in Fig. 5 and repre-
sents our single iteration approximation. Note that the Gp�x�
that make up G�x� are only approximately valid over the
range between the boundaries xpq. This approximation is best
near the midpoint between two adjacent xpq. Improvement
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could be obtained by carrying out another iteration using the
entire piecewise smooth G�x� from Fig. 5 as the integrand in
Eq. �A1� and generating a new G�x�. This iteration process
can be repeated. No qualitative change results from this other
than a rounding of the function in the vicinity of the bound-
aries xpq.

How might this toy model relate to a real hydrodynamic
system? We have already seen that Eq. �A1� is analogous to
Eq. �9�. Equation �11� suggests that there should be an analo-

gous equation for Ĉ
˜

�. So both the thermal conductivity and
bulk viscosity might diverge at low frequency in a manner
similar to our toy model. The picture here is one of an infi-
nite regression of renormalizations. Parts of the sequence of
exponents obtained here �0/1 ,1 /2 ,1 /3 ,2 /5 , . . . � have al-

ready been seen in other papers. For example, the work in
Refs. �11,12� may be seen as a “one-step” renormalization
from constant transport coefficients yielding frequency-
dependent transport coefficients which go as �−1/2. The more
recent work in Ref. �9� can be seen as a “second step.”
Narayan and Ramaswamy argue in the text after their equa-
tion �5� that the momentum current correlation functions can

be taken as t−d/2 �in 1D this gives a bulk viscosity �̂��−1/2�
and from this obtain a thermal conductivity �̂��−1/3. In Ref.
�8� the authors propose a phenomenological relaxation rate
for the oscillatory modes of a system �k—analogous to �kk

2.
They then, after their equation �15� propose that this relax-
ation rate should go as k5/3. This is the same as �k�k−1/3.
This yields, in their analysis, a thermal conductivity �̂
��−2/5. We propose that a fundamental issue is whether
there is an endpoint to the renormalizations that must be
carried out in obtaining the low-frequency behavior of the
transport coefficients.

If the infinite regression of renormalizations above were
the correct picture then we should expect a “universal” be-
havior at very low frequency of �−p*

for both the thermal
conductivity and the bulk viscosity. However, this universal
behavior would not be reached until frequencies so low as to
be, possibly, inaccessible by simulation. However, at acces-

sible time scales both �̂ and �̂ would be seen to pass through
regimes of �−q with various values of q. The exact exponents
seen for any system would depend on the specific details of
the high-frequency nonhydrodynamic interactions, and the
lowest frequency probed by the simulations. Thus, at acces-
sible low frequencies, the behavior of 1D hydrodynamic sys-
tems would be best described by Eq. �9� and an analogous
equation for the MCPS, rather than by any specific power
law divergence of the transport coefficients. If this picture is
correct then attention should focus on verification of Eqs. �9�
and �10� and a corresponding equation for the MCPS rather
than on cataloging low frequency behaviors of more and
more systems.
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FIG. 5. �Color online� G�x� /G*�x� for �=1, G0=1 showing Gp

for p=0,1 /2 ,1 /3 ,2 /5 ,3 /8 ,5 /13.
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